Re-Stream: Real-time and energy-efficient resource scheduling in big data stream computing environments
نویسندگان
چکیده
منابع مشابه
Re-Stream: Real-time and energy-efficient resource scheduling in big data stream computing environments
To achieve high energy efficiency and low response time in big data stream computing environments, it is required to model an energy-efficient resource scheduling and optimization framework. In this paper, we propose a real-time and energy-efficient resource scheduling and optimization framework, termed the Re-Stream. Firstly, the Re-Stream profiles a mathematical relationship among energy cons...
متن کاملReal-time stream processing for Big Data
With the rise of the web 2.0 and the Internet of things, it has become feasible to track all kinds of information over time, in particular fine-grained user activities and sensor data on their environment and even their biometrics. However, while efficiency remains mandatory for any application trying to cope with huge amounts of data, only part of the potential of today’s Big Data repositories...
متن کاملReal-Time Big Data Stream Analytics
Big Data is a new term used to identify datasets that we cannot manage with current methodologies or data mining software tools due to their large size and complexity. Big Data mining is the capability of extracting useful information from these large datasets or streams of data. New mining techniques are necessary due to the volume, variability, and velocity, of such data. MOA is a software fr...
متن کاملKey Technologies for Big Data Stream Computing
As a new trend for data-intensive computing, real-time stream computing is gaining significant attention in the Big Data era. In theory, stream computing is an effective way to support Big Data by providing extremely low-latency processing tools and massively parallel processing architectures in real-time data analysis. However, in most existing stream computing environments, how to efficiently...
متن کاملWAVES: Big Data Platform for Real-time RDF Stream Processing
Processing data as they arrive has recently gained momentum to mine continuous, high-volume and unbounded sequence of data streams. Due to the heterogeneity and the multi-modality of this data, RDF is widely used to provide a unified metadata layer in streaming context. In response to this ever-increasing demand, a number of systems and languages were produced, aiming at RDF stream processing (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Sciences
سال: 2015
ISSN: 0020-0255
DOI: 10.1016/j.ins.2015.03.027